Tensor products of operator spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert Modules and Tensor Products of Operator Spaces

The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product H⊗̂H is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C∗-algebra is shown to be completely bounded with ‖b‖cb = ‖b‖. The so ca...

متن کامل

On Tensor Products of Operator Modules

The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.

متن کامل

The " Maximal " Tensor Product of Operator Spaces

In analogy with the maximal tensor product of C *-algebras, we define the " maximal " tensor product E 1 ⊗ µ E 2 of two operator spaces E 1 and E 2 and we show that it can be identified completely isometrically with the sum of the two Haagerup tensor

متن کامل

Path Spaces , Continuous Tensor Products

We classify all continuous tensor product systems of Hilbert spaces which are “infinitely divisible” in the sense that they have an associated logarithmic structure. These results are applied to the theory of E0-semigroups to deduce that every E0-semigroup possessing sufficiently many “decomposable” operators must be cocycle conjugate to a CCR flow. A path space is an abstraction of the set of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1991

ISSN: 0022-1236

DOI: 10.1016/0022-1236(91)90042-4